6 research outputs found

    Intent-Aware Contextual Recommendation System

    Full text link
    Recommender systems take inputs from user history, use an internal ranking algorithm to generate results and possibly optimize this ranking based on feedback. However, often the recommender system is unaware of the actual intent of the user and simply provides recommendations dynamically without properly understanding the thought process of the user. An intelligent recommender system is not only useful for the user but also for businesses which want to learn the tendencies of their users. Finding out tendencies or intents of a user is a difficult problem to solve. Keeping this in mind, we sought out to create an intelligent system which will keep track of the user's activity on a web-application as well as determine the intent of the user in each session. We devised a way to encode the user's activity through the sessions. Then, we have represented the information seen by the user in a high dimensional format which is reduced to lower dimensions using tensor factorization techniques. The aspect of intent awareness (or scoring) is dealt with at this stage. Finally, combining the user activity data with the contextual information gives the recommendation score. The final recommendations are then ranked using filtering and collaborative recommendation techniques to show the top-k recommendations to the user. A provision for feedback is also envisioned in the current system which informs the model to update the various weights in the recommender system. Our overall model aims to combine both frequency-based and context-based recommendation systems and quantify the intent of a user to provide better recommendations. We ran experiments on real-world timestamped user activity data, in the setting of recommending reports to the users of a business analytics tool and the results are better than the baselines. We also tuned certain aspects of our model to arrive at optimized results.Comment: Presented at the 5th International Workshop on Data Science and Big Data Analytics (DSBDA), 17th IEEE International Conference on Data Mining (ICDM) 2017; 8 pages; 4 figures; Due to the limitation "The abstract field cannot be longer than 1,920 characters," the abstract appearing here is slightly shorter than the one in the PDF fil

    What to Read in a Contract? Party-Specific Summarization of Legal Obligations, Entitlements, and Prohibitions

    Full text link
    Reviewing and comprehending key obligations, entitlements, and prohibitions in legal contracts can be a tedious task due to their length and domain-specificity. Furthermore, the key rights and duties requiring review vary for each contracting party. In this work, we propose a new task of party-specific extractive summarization for legal contracts to facilitate faster reviewing and improved comprehension of rights and duties. To facilitate this, we curate a dataset comprising of party-specific pairwise importance comparisons annotated by legal experts, covering ~293K sentence pairs that include obligations, entitlements, and prohibitions extracted from lease agreements. Using this dataset, we train a pairwise importance ranker and propose a pipeline-based extractive summarization system that generates a party-specific contract summary. We establish the need for incorporating domain-specific notion of importance during summarization by comparing our system against various baselines using both automatic and human evaluation methodsComment: EMNLP 202

    SALAD: Source-free Active Label-Agnostic Domain Adaptation for Classification, Segmentation and Detection

    Full text link
    We present a novel method, SALAD, for the challenging vision task of adapting a pre-trained "source" domain network to a "target" domain, with a small budget for annotation in the "target" domain and a shift in the label space. Further, the task assumes that the source data is not available for adaptation, due to privacy concerns or otherwise. We postulate that such systems need to jointly optimize the dual task of (i) selecting fixed number of samples from the target domain for annotation and (ii) transfer of knowledge from the pre-trained network to the target domain. To do this, SALAD consists of a novel Guided Attention Transfer Network (GATN) and an active learning function, HAL. The GATN enables feature distillation from pre-trained network to the target network, complemented with the target samples mined by HAL using transfer-ability and uncertainty criteria. SALAD has three key benefits: (i) it is task-agnostic, and can be applied across various visual tasks such as classification, segmentation and detection; (ii) it can handle shifts in output label space from the pre-trained source network to the target domain; (iii) it does not require access to source data for adaptation. We conduct extensive experiments across 3 visual tasks, viz. digits classification (MNIST, SVHN, VISDA), synthetic (GTA5) to real (CityScapes) image segmentation, and document layout detection (PubLayNet to DSSE). We show that our source-free approach, SALAD, results in an improvement of 0.5%-31.3%(across datasets and tasks) over prior adaptation methods that assume access to large amounts of annotated source data for adaptation

    Entailment Relation Aware Paraphrase Generation

    No full text
    We introduce a new task of entailment relation aware paraphrase generation which aims at generating a paraphrase conforming to a given entailment relation (e.g. equivalent, forward entailing, or reverse entailing) with respect to a given input. We propose a reinforcement learning-based weakly-supervised paraphrasing system, ERAP, that can be trained using existing paraphrase and natural language inference (NLI) corpora without an explicit task-specific corpus. A combination of automated and human evaluations show that ERAP generates paraphrases conforming to the specified entailment relation and are of good quality as compared to the baselines and uncontrolled paraphrasing systems. Using ERAP for augmenting training data for downstream textual entailment task improves performance over an uncontrolled paraphrasing system, and introduces fewer training artifacts, indicating the benefit of explicit control during paraphrasing
    corecore